Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
I
Im
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
王肇一
Im
Commits
1cab996a
Commit
1cab996a
authored
Jan 10, 2020
by
王肇一
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
generate mask avoid real signal
parent
9a523da8
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
85 additions
and
50 deletions
+85
-50
32bit_to8.py
cli/32bit_to8.py
+24
-0
util.py
cvBasedMethod/util.py
+37
-22
main.py
main.py
+13
-10
predict.py
predict.py
+11
-18
No files found.
cli/32bit_to8.py
0 → 100644
View file @
1cab996a
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import
os
import
cv2
as
cv
import
argparse
def
get_args
():
parser
=
argparse
.
ArgumentParser
(
description
=
'Identify targets from background by KMeans or Threshold'
,
formatter_class
=
argparse
.
ArgumentDefaultsHelpFormatter
)
parser
.
add_argument
(
'-i'
,
'--input'
,
metavar
=
'I'
,
type
=
str
,
default
=
'./'
,
help
=
'input_dir'
,
dest
=
'input'
)
parser
.
add_argument
(
'-o'
,
'--output'
,
metavar
=
'O'
,
type
=
str
,
default
=
'./out/'
,
help
=
'output dir'
,
dest
=
'output'
)
return
parser
.
parse_args
()
args
=
get_args
()
os
.
mkdir
(
args
.
output
)
for
name
in
os
.
listdir
(
args
.
input
):
img
=
cv
.
imread
(
args
.
input
+
name
,
flags
=
cv
.
IMREAD_GRAYSCALE
)
cv
.
imwrite
(
args
.
output
+
name
,
img
)
\ No newline at end of file
cvBasedMethod/util.py
View file @
1cab996a
...
@@ -4,8 +4,10 @@ import numpy as np
...
@@ -4,8 +4,10 @@ import numpy as np
import
cv2
as
cv
import
cv2
as
cv
import
pandas
as
pd
import
pandas
as
pd
import
matplotlib.pyplot
as
plt
import
matplotlib.pyplot
as
plt
import
seaborn
as
sns
import
logging
import
logging
import
os
import
os
import
re
from
cvBasedMethod.filters
import
fft_mask
,
butterworth
from
cvBasedMethod.filters
import
fft_mask
,
butterworth
def
remove_scratch
(
img
):
def
remove_scratch
(
img
):
...
@@ -71,32 +73,47 @@ def save_img(img_list, dir, name):
...
@@ -71,32 +73,47 @@ def save_img(img_list, dir, name):
plt
.
title
(
title
)
plt
.
title
(
title
)
plt
.
imshow
(
img
,
'gray'
)
plt
.
imshow
(
img
,
'gray'
)
try
:
try
:
os
.
makedirs
(
'
o
ut/'
+
dir
+
'/graph'
)
os
.
makedirs
(
'
data/outp
ut/'
+
dir
+
'/graph'
)
except
:
except
:
logging
.
info
(
'Existing dir:
out/'
+
dir
+
'/graph'
)
logging
.
info
(
'Existing dir:
data/output/'
+
dir
)
plt
.
savefig
(
'
out/'
+
dir
+
'/graph/'
+
name
+
'.png'
)
plt
.
savefig
(
'
data/output/'
+
dir
+
'/graph/'
+
name
[:
-
4
]
+
'.png'
)
plt
.
close
()
plt
.
close
()
def
calcRes
(
img
,
mask
,
dir
=
'output'
,
name
=
'output'
):
def
calcRes
(
img
,
mask
,
dir
=
'
default_
output'
,
name
=
'output'
):
dic
=
get_subarea_infor
(
img
,
mask
)
dic
=
get_subarea_infor
(
img
,
mask
)
df
=
pd
.
DataFrame
(
dic
)
df
=
pd
.
DataFrame
(
dic
)
try
:
try
:
os
.
makedirs
(
'
o
ut/'
+
dir
+
'/csv'
)
os
.
makedirs
(
'
data/outp
ut/'
+
dir
+
'/csv'
)
except
:
except
:
logging
.
info
(
'Existing dir: out/'
+
dir
+
'/csv'
)
logging
.
info
(
'Existing dir: out/'
+
dir
+
'/csv'
)
df
.
to_csv
(
'out/'
+
dir
+
'/csv/'
+
name
+
'.csv'
)
if
len
(
df
)
!=
0
:
df
.
to_csv
(
'data/output/'
+
dir
+
'/csv/'
+
name
+
'.csv'
,
index
=
False
)
def
draw_bar
(
exName
,
names
):
df
=
pd
.
DataFrame
(
columns
=
(
'class'
,
'perc'
,
'Label'
,
'Area'
,
'Mean'
,
'Std'
,
'BackMean'
,
'BackStd'
))
for
name
in
names
:
tmp
=
pd
.
read_csv
(
'data/output/'
+
exName
+
'/csv/'
+
name
)
match_group
=
re
.
match
(
'.*
\
s([dD]2[oO]|[lL][bB]|.*ug).*
\
s(.+)
\
.csv'
,
name
)
tmp
[
'perc'
]
=
str
.
lower
(
match_group
.
group
(
1
))[:
-
2
]
if
str
.
lower
(
match_group
.
group
(
1
))
.
endswith
(
'ug'
)
else
str
.
lower
(
match_group
.
group
(
1
))
tmp
[
'perc'
]
.
replace
({
'd2o'
:
'0'
},
inplace
=
True
)
tmp
[
'class'
]
=
str
.
lower
(
match_group
.
group
(
2
))
df
=
df
.
append
(
tmp
,
ignore_index
=
True
,
sort
=
True
)
df
=
df
[
df
[
'Area'
]
>
19
]
df
[
'Pure'
]
=
df
[
'Mean'
]
-
df
[
'BackMean'
]
sns
.
set_style
(
"darkgrid"
)
#sns.catplot(x = 'perc',y = 'Mean',hue = 'class',kind='bar',data = df)
sns
.
pairplot
(
df
,
vars
=
[
'Area'
,
'Mean'
,
'perc'
,
'class'
])
plt
.
show
()
def
get_subarea_infor
(
img
,
mask
):
def
get_subarea_infor
(
img
,
mask
):
area_num
,
labels
,
stats
,
centroids
=
cv
.
connectedComponentsWithStats
(
mask
)
area_num
,
labels
,
stats
,
centroids
=
cv
.
connectedComponentsWithStats
(
mask
)
info
=
[]
label_group
=
[]
area_group
=
[]
mean_group
=
[]
std_group
=
[]
back_mean
=
[]
back_std
=
[]
for
i
in
filter
(
lambda
x
:
x
!=
0
,
range
(
area_num
)):
for
i
in
filter
(
lambda
x
:
x
!=
0
,
range
(
area_num
)):
group
=
np
.
where
(
labels
==
i
)
group
=
np
.
where
(
labels
==
i
)
...
@@ -113,19 +130,16 @@ def get_subarea_infor(img, mask):
...
@@ -113,19 +130,16 @@ def get_subarea_infor(img, mask):
res
[
x
,
y
]
=
mask
[
x
,
y
]
res
[
x
,
y
]
=
mask
[
x
,
y
]
else
:
else
:
res
[
x
,
y
]
=
0
res
[
x
,
y
]
=
0
kernel
=
np
.
ones
((
17
,
17
),
np
.
uint8
)
kernel
=
np
.
ones
((
17
,
17
),
np
.
uint8
)
mask_background
=
cv
.
erode
(
255
-
res
,
kernel
)
mask_background
=
cv
.
erode
(
255
-
res
,
kernel
)
minimask
=
cv
.
bitwise_xor
(
mask_background
,
255
-
res
)
minimask
=
cv
.
bitwise_xor
(
mask_background
,
255
-
res
)
realminimask
=
cv
.
bitwise_and
(
minimask
,
255
-
mask
)
img_background
=
img
[
np
.
where
(
minimask
!=
0
)]
img_background
=
img
[
np
.
where
(
real
minimask
!=
0
)]
mean_value
=
np
.
mean
(
img_background
)
mean_value
=
np
.
mean
(
img_background
)
std_value
=
np
.
std
(
img_background
)
std_value
=
np
.
std
(
img_background
)
label_group
.
append
(
i
)
info
.
append
({
'Label'
:
i
,
'Area'
:
area_tmp
,
'Mean'
:
mean_tmp
,
'Std'
:
std_tmp
,
'BackMean'
:
mean_value
,
area_group
.
append
(
area_tmp
)
'BackStd'
:
std_value
})
mean_group
.
append
(
mean_tmp
)
return
info
std_group
.
append
(
std_tmp
)
\ No newline at end of file
back_mean
.
append
(
mean_value
)
back_std
.
append
(
std_value
)
return
{
'Label'
:
label_group
,
'Area'
:
area_group
,
'Mean'
:
mean_group
,
'Std'
:
std_group
,
'BackMean'
:
back_mean
,
'BackStd'
:
back_std
}
main.py
View file @
1cab996a
...
@@ -24,7 +24,7 @@ def method_threshold(imglist, process = 8):
...
@@ -24,7 +24,7 @@ def method_threshold(imglist, process = 8):
def
method_newThreshold
(
imglist
,
process
=
8
):
def
method_newThreshold
(
imglist
,
process
=
8
):
pool
=
Pool
(
process
)
pool
=
Pool
(
process
)
pool
.
map
(
lambda
x
:
threshold
(
x
,
'fft'
),
imglist
)
pool
.
map
(
lambda
x
:
threshold
(
x
,
'fft'
),
imglist
)
pool
.
close
()
pool
.
close
()
pool
.
join
()
pool
.
join
()
...
@@ -32,8 +32,9 @@ def method_newThreshold(imglist, process = 8):
...
@@ -32,8 +32,9 @@ def method_newThreshold(imglist, process = 8):
def
get_args
():
def
get_args
():
parser
=
argparse
.
ArgumentParser
(
description
=
'Identify targets from background by KMeans or Threshold'
,
parser
=
argparse
.
ArgumentParser
(
description
=
'Identify targets from background by KMeans or Threshold'
,
formatter_class
=
argparse
.
ArgumentDefaultsHelpFormatter
)
formatter_class
=
argparse
.
ArgumentDefaultsHelpFormatter
)
parser
.
add_argument
(
'-m'
,
'--method'
,
metavar
=
'M'
,
type
=
int
,
default
=
0
,
parser
.
add_argument
(
'-m'
,
'--method'
,
metavar
=
'M'
,
type
=
int
,
default
=
3
,
help
=
'0 for KMeans; 1 for Threshold; 2 for newThreshold'
,
dest
=
'method'
)
help
=
'0 for KMeans; 1 for Threshold; 2 for newThreshold; 3 for Unet; 4 for further process'
,
dest
=
'method'
)
parser
.
add_argument
(
'-c'
,
'--core'
,
metavar
=
'C'
,
type
=
int
,
default
=
5
,
help
=
'Num of cluster'
,
dest
=
'core'
)
parser
.
add_argument
(
'-c'
,
'--core'
,
metavar
=
'C'
,
type
=
int
,
default
=
5
,
help
=
'Num of cluster'
,
dest
=
'core'
)
parser
.
add_argument
(
'-p'
,
'--process'
,
metavar
=
'P'
,
type
=
int
,
default
=
8
,
help
=
'Num of process'
,
parser
.
add_argument
(
'-p'
,
'--process'
,
metavar
=
'P'
,
type
=
int
,
default
=
8
,
help
=
'Num of process'
,
dest
=
'process'
)
dest
=
'process'
)
...
@@ -48,16 +49,18 @@ def get_args():
...
@@ -48,16 +49,18 @@ def get_args():
return
parser
.
parse_args
()
return
parser
.
parse_args
()
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
args
=
get_args
()
args
=
get_args
()
path
=
[
'data/imgs/'
+
x
for
x
in
os
.
listdir
(
'data/imgs'
)]
path
=
[(
y
,
x
)
for
y
in
filter
(
lambda
x
:
x
!=
'.DS_Store'
,
os
.
listdir
(
'data/imgs'
))
for
x
in
filter
(
lambda
x
:
x
.
endswith
(
'.tif'
)
and
not
x
.
endswith
(
'dc.tif'
)
and
not
x
.
endswith
(
'DC.tif'
)
and
not
x
.
endswith
(
'dc .tif'
),
os
.
listdir
(
'data/imgs/'
+
y
))]
if
args
.
method
==
0
:
if
args
.
method
==
0
:
method_kmeans
(
path
,
args
.
core
)
method_kmeans
(
path
,
args
.
core
)
elif
args
.
method
==
1
:
elif
args
.
method
==
1
:
method_threshold
(
path
,
args
.
process
)
method_threshold
(
path
,
args
.
process
)
elif
args
.
method
==
2
:
elif
args
.
method
==
2
:
method_newThreshold
(
path
,
args
.
process
)
method_newThreshold
(
path
,
args
.
process
)
elif
args
.
method
==
3
:
elif
args
.
method
==
3
:
predict
(
path
,
[
'data/output/imgs/'
+
name
[
10
:]
for
name
in
path
],
args
.
load
,
args
.
scale
,
args
.
mask_threshold
)
predict
(
path
,
args
.
load
,
args
.
scale
,
args
.
mask_threshold
)
for
exName
in
filter
(
lambda
x
:
x
!=
'.DS_Store'
,
os
.
listdir
(
'data/output'
)):
draw_bar
(
exName
,
os
.
listdir
(
'data/output/'
+
exName
+
'/csv'
))
predict.py
View file @
1cab996a
...
@@ -3,10 +3,13 @@ import numpy as np
...
@@ -3,10 +3,13 @@ import numpy as np
import
torch
import
torch
import
torch.nn.functional
as
F
import
torch.nn.functional
as
F
from
PIL
import
Image
from
PIL
import
Image
import
cv2
as
cv
from
tqdm
import
tqdm
from
torchvision
import
transforms
from
torchvision
import
transforms
from
unet
import
UNet
from
unet
import
UNet
from
utils.dataset
import
BasicDataset
from
utils.dataset
import
BasicDataset
from
cvBasedMethod.util
import
save_img
,
calcRes
def
predict_img
(
net
,
full_img
,
device
,
scale_factor
=
1
,
out_threshold
=
0.5
):
def
predict_img
(
net
,
full_img
,
device
,
scale_factor
=
1
,
out_threshold
=
0.5
):
...
@@ -30,14 +33,7 @@ def predict_img(net, full_img, device, scale_factor = 1, out_threshold = 0.5):
...
@@ -30,14 +33,7 @@ def predict_img(net, full_img, device, scale_factor = 1, out_threshold = 0.5):
return
full_mask
>
out_threshold
return
full_mask
>
out_threshold
def
mask_to_image
(
mask
):
def
predict
(
file_names
,
model
,
scale
,
mask_threshold
):
return
Image
.
fromarray
((
mask
*
255
)
.
astype
(
np
.
uint8
))
def
predict
(
img_name
,
outdir
,
model
,
scale
,
mask_threshold
):
in_files
=
img_name
out_files
=
outdir
net
=
UNet
(
n_channels
=
1
,
n_classes
=
1
)
net
=
UNet
(
n_channels
=
1
,
n_classes
=
1
)
logging
.
info
(
"Loading model {}"
.
format
(
model
))
logging
.
info
(
"Loading model {}"
.
format
(
model
))
...
@@ -49,15 +45,12 @@ def predict(img_name, outdir, model, scale, mask_threshold):
...
@@ -49,15 +45,12 @@ def predict(img_name, outdir, model, scale, mask_threshold):
logging
.
info
(
"Model loaded !"
)
logging
.
info
(
"Model loaded !"
)
for
i
,
fn
in
enumerate
(
in_files
):
for
i
,
fn
in
enumerate
(
tqdm
(
file_names
)):
logging
.
info
(
"
\n
Predicting image {} ..."
.
format
(
fn
))
logging
.
info
(
"
\n
Predicting image {} ..."
.
format
(
fn
[
0
]
+
'/'
+
fn
[
1
]))
img
=
Image
.
open
(
'data/imgs/'
+
fn
[
0
]
+
'/'
+
fn
[
1
])
img
=
Image
.
open
(
fn
)
mask
=
predict_img
(
net
=
net
,
full_img
=
img
,
scale_factor
=
scale
,
out_threshold
=
mask_threshold
,
mask
=
predict_img
(
net
=
net
,
full_img
=
img
,
scale_factor
=
scale
,
out_threshold
=
mask_threshold
,
device
=
device
)
device
=
device
)
#out_fn = out_files[i]
result
=
mask_to_image
(
mask
)
result
.
save
(
out_files
[
i
])
logging
.
info
(
"Mask saved to {}"
.
format
(
out_files
[
i
]))
result
=
(
mask
*
255
)
.
astype
(
np
.
uint8
)
# result.save(out_files[i]) # logging.info("Mask saved to {}".format(out_files[i]))
\ No newline at end of file
save_img
({
'ori'
:
img
,
'mask'
:
result
},
fn
[
0
],
fn
[
1
])
calcRes
(
cv
.
cvtColor
(
np
.
asarray
(
img
),
cv
.
COLOR_RGB2BGR
),
result
,
fn
[
0
],
fn
[
1
][:
-
4
])
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment