Commit 779e4979 by 王肇一

refined README

parent 46cb23a3
......@@ -27,22 +27,39 @@
4. 运行第二阶段
5. 查看结果
## 主程序入口
## 主程序入口: UnetBasedMethod.py
### 参数
* -m ,--method : 0 使用Kmeans,1 使用阈值法(butterworth滤波),2 使用阈值法(fft),3 使用unet。默认Kmeans
* -c ,--core : Kmeans分为几类,默认5,仅对Kmeans法有效
* -p ,--process : 使用线程数量,默认8,仅对阈值法有效
### 示例
```
usage: UnetBasedMethod.py [-h] [--step STEP] [-p P] [--module FILE]
[--mask-threshold MASK_THRESHOLD] [--scale SCALE]
A simple toolkit designed by Ulden
optional arguments:
-h, --help show this help message and exit
--step STEP, -s STEP step 1: recognize; step 2: barcharts (default: 2)
-p P, --process P Num of process (default: 8)
--module FILE, -m FILE
Specify the file in which the model is stored
(default: MODEL)
--mask-threshold MASK_THRESHOLD, -t MASK_THRESHOLD
Minimum probability value to consider a mask pixel
white (default: 0.5)
--scale SCALE, -S SCALE
Scale factor for the input images (default: 1.0)
```
- `python main.py -m 1 -p 16`
- `python main.py -m 0 -c 8`
### 用法
1. 步骤一:`python UnetBasedMethod.py -s 1 -p 8 -m MODEL`
2. 步骤二:根据output结果,从imgs文件夹下挑选对应图片,删除不需要的图
3. 步骤三:`python UnetBasedMethod.py -s 2 -p 8`
## 使用Unet模型
### 训练
```
python train.py -h
usage: train.py [-h] [-e E] [-b [B]] [-l [LR]] [-f LOAD] [-s SCALE] [-v VAL]
Train the UNet on images and target masks
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment