Commit b5ea10ef by 王肇一

ready for interactive method

parent e61c02b6
......@@ -6,7 +6,7 @@ import argparse
from cvBasedMethod.util import *
from cvBasedMethod.kmeans import kmeans, kmeans_back
from cvBasedMethod.threshold import threshold
from predict import predict
from utils.predict import predict
def method_kmeans(imglist, core = 5):
......@@ -32,7 +32,7 @@ def method_newThreshold(imglist, process = 8):
def get_args():
parser = argparse.ArgumentParser(description = 'Identify targets from background by KMeans or Threshold',
formatter_class = argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('-m', '--method', metavar = 'M', type = int, default = 3,
parser.add_argument('-m', '--method', metavar = 'M', type = int, default = 0,
help = '0 for KMeans; 1 for Threshold; 2 for newThreshold; 3 for Unet; 4 for further process',
dest = 'method')
parser.add_argument('-c', '--core', metavar = 'C', type = int, default = 5, help = 'Num of cluster', dest = 'core')
......@@ -59,8 +59,4 @@ if __name__ == '__main__':
elif args.method == 1:
method_threshold(path, args.process)
elif args.method == 2:
method_newThreshold(path, args.process)
elif args.method == 3:
predict(path, args.load, args.scale, args.mask_threshold)
for exName in filter(lambda x: x != '.DS_Store', os.listdir('data/output')):
draw_bar(exName, os.listdir('data/output/' + exName + '/csv'))
method_newThreshold(path, args.process)
\ No newline at end of file
#!/usr/bin/env python
# -*- coding:utf-8 -*-
\ No newline at end of file
# -*- coding:utf-8 -*-
from multiprocessing import Pool
from tqdm import tqdm
import argparse
import os
from utils.predict import predict
from resCalc import draw_bar
def get_args():
parser = argparse.ArgumentParser(description = 'A simple toolkit designed by Ulden',
formatter_class = argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--step', '-s', type = int, default = 1,help = "step 1: recognize; step 2: barcharts")
# Unet para
parser.add_argument('--module', '-m', default = 'data/module/MODEL.pth', metavar = 'FILE',
help = "Specify the file in which the model is stored")
parser.add_argument('--mask-threshold', '-t', type = float,
help = "Minimum probability value to consider a mask pixel white", default = 0.5)
parser.add_argument('--scale', '-S', type = float, help = "Scale factor for the input images", default = 0.5)
return parser.parse_args()
if __name__ == '__main__':
args = get_args()
path = [(y, x) for y in filter(lambda x: x != '.DS_Store', os.listdir('data/imgs')) for x in filter(
lambda x: x.endswith('.tif') and not x.endswith('dc.tif') and not x.endswith('DC.tif') and not x.endswith(
'dc .tif'), os.listdir('data/imgs/' + y))]
if args.step == 1:
predict(path, args.load, args.scale, args.mask_threshold)
for exName in filter(lambda x: x != '.DS_Store', os.listdir('data/output')):
draw_bar(exName, os.listdir('data/output/' + exName + '/csv'))
......@@ -2,7 +2,8 @@
# -*- coding:utf-8 -*-
from sklearn.cluster import KMeans
from cvBasedMethod.util import *
import matplotlib.pyplot as plt
from resCalc import save_img,calcRes
def kmeans(pair, cluster_num = 5,filter='butter'):
img_list = pre(pair,'clahe',filter)
......
#!/usr/bin/env python
# -*- coding:utf-8 -*-
from cvBasedMethod.util import *
from resCalc import save_img, calcRes
def threshold(pair,filter='butter'):
......
......@@ -2,12 +2,6 @@
# -*- coding:utf-8 -*-
import numpy as np
import cv2 as cv
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import logging
import os
import re
from cvBasedMethod.filters import fft_mask,butterworth
def remove_scratch(img):
......@@ -62,84 +56,4 @@ def pre(pair,even='clahe',filter='butter'):
return {'ori': img, 'even': even, 'filtered': filtered, 'denoise': denoise, 'blr': blr}
def save_img(img_list, dir, name):
num = len(img_list)
plt.figure(figsize = (100, 20))
plt.suptitle(name)
for i, title in zip(range(num), img_list):
img = img_list[title]
plt.subplot(1, num, i + 1)
plt.title(title)
plt.imshow(img, 'gray')
try:
os.makedirs('data/output/' + dir + '/graph')
except:
logging.info('Existing dir: data/output/' + dir )
plt.savefig('data/output/' + dir + '/graph/' + name[:-4] + '.png')
plt.close()
def calcRes(img, mask, dir = 'default_output', name = 'output'):
dic = get_subarea_infor(img, mask)
df = pd.DataFrame(dic)
try:
os.makedirs('data/output/' + dir + '/csv')
except:
logging.info('Existing dir: out/' + dir + '/csv')
if len(df)!=0:
df.to_csv('data/output/' + dir + '/csv/' + name + '.csv',index = False)
def draw_bar(exName,names):
df = pd.DataFrame(columns = ('class', 'perc', 'Label', 'Area', 'Mean', 'Std', 'BackMean', 'BackStd'))
for name in names:
tmp = pd.read_csv('data/output/' + exName + '/csv/' + name)
match_group = re.match('.*\s([dD]2[oO]|[lL][bB]|.*ug).*\s(.+)\.csv', name)
tmp['perc'] = str.lower(match_group.group(1))[:-2] if str.lower(match_group.group(1)).endswith('ug') else str.lower(
match_group.group(1))
tmp['perc'].replace({'d2o':'0'},inplace = True)
tmp['class'] = str.lower(match_group.group(2))
df = df.append(tmp, ignore_index = True, sort = True)
df = df[df['Area']>19]
df['Pure'] = df['Mean'] - df['BackMean']
sns.set_style("darkgrid")
#sns.catplot(x = 'perc',y = 'Mean',hue = 'class',kind='bar',data = df)
sns.pairplot(df, vars = ['Area', 'Mean', 'perc','class'])
plt.show()
def get_subarea_infor(img, mask):
area_num, labels, stats, centroids = cv.connectedComponentsWithStats(mask)
info = []
for i in filter(lambda x: x != 0, range(area_num)):
group = np.where(labels == i)
img_value = img[group]
area_tmp = len(group[0])
mean_tmp = np.mean(img_value)
std_tmp = np.std(img_value)
pos = [(group[0][i], group[1][i]) for i in range(len(group[0]))]
res = np.zeros([200, 200], np.uint8)
for x in range(200):
for y in range(200):
if (x, y) in pos:
res[x, y] = mask[x, y]
else:
res[x, y] = 0
kernel = np.ones((17, 17), np.uint8)
mask_background = cv.erode(255 - res, kernel)
minimask = cv.bitwise_xor(mask_background, 255 - res)
realminimask = cv.bitwise_and(minimask, 255 - mask)
img_background = img[np.where(realminimask != 0)]
mean_value = np.mean(img_background)
std_value = np.std(img_background)
info.append({'Label': i, 'Area': area_tmp, 'Mean': mean_tmp, 'Std': std_tmp, 'BackMean': mean_value,
'BackStd': std_value})
return info
\ No newline at end of file
......@@ -3,4 +3,5 @@ pandas
tqdm
matplotlib
numpy
opencv-python
\ No newline at end of file
opencv-python
seaborn
\ No newline at end of file
#!/usr/bin/env python
# -*- coding:utf-8 -*-
\ No newline at end of file
# -*- coding:utf-8 -*-
import pandas as pd
import numpy as np
import cv2 as cv
import matplotlib.pyplot as plt
import seaborn as sns
import logging
import os
import re
def save_img(img_list, dir, name):
num = len(img_list)
plt.figure(figsize = (100, 20))
plt.suptitle(name)
for i, title in zip(range(num), img_list):
img = img_list[title]
plt.subplot(1, num, i + 1)
plt.title(title)
plt.imshow(img, 'gray')
try:
os.makedirs('data/output/' + dir + '/graph')
except:
logging.info('Existing dir: data/output/' + dir)
plt.savefig('data/output/' + dir + '/graph/' + name[:-4] + '.png')
plt.close()
def calcRes(img, mask, dir = 'default_output', name = 'output'):
dic = get_subarea_infor(img, mask)
df = pd.DataFrame(dic)
try:
os.makedirs('data/output/' + dir + '/csv')
except:
logging.info('Existing dir: out/' + dir + '/csv')
if len(df) != 0:
df.to_csv('data/output/' + dir + '/csv/' + name + '.csv', index = False)
def draw_bar(exName, names):
df = pd.DataFrame(columns = ('class', 'perc', 'Label', 'Area', 'Mean', 'Std', 'BackMean', 'BackStd'))
for name in names:
tmp = pd.read_csv('data/output/' + exName + '/csv/' + name)
match_group = re.match('.*\s([dD]2[oO]|[lL][bB]|.*ug).*\s(.+)\.csv', name)
tmp['perc'] = str.lower(match_group.group(1))[:-2] if str.lower(match_group.group(1)).endswith(
'ug') else str.lower(match_group.group(1))
tmp['perc'].replace({'d2o': '0'}, inplace = True)
tmp['class'] = str.lower(match_group.group(2))
df = df.append(tmp, ignore_index = True, sort = True)
df = df[df['Area'] > 19]
df['Pure'] = df['Mean'] - df['BackMean']
sns.set_style("darkgrid")
# sns.catplot(x = 'perc',y = 'Mean',hue = 'class',kind='bar',data = df)
sns.pairplot(df, vars = ['Area', 'Mean', 'perc', 'class'])
plt.show()
def get_subarea_infor(img, mask):
area_num, labels, stats, centroids = cv.connectedComponentsWithStats(mask)
info = []
for i in filter(lambda x: x != 0, range(area_num)):
group = np.where(labels == i)
img_value = img[group]
area_tmp = len(group[0])
mean_tmp = np.mean(img_value)
std_tmp = np.std(img_value)
pos = [(group[0][i], group[1][i]) for i in range(len(group[0]))]
res = np.zeros([200, 200], np.uint8)
for x in range(200):
for y in range(200):
if (x, y) in pos:
res[x, y] = mask[x, y]
else:
res[x, y] = 0
kernel = np.ones((17, 17), np.uint8)
mask_background = cv.erode(255 - res, kernel)
minimask = cv.bitwise_xor(mask_background, 255 - res)
realminimask = cv.bitwise_and(minimask, 255 - mask)
img_background = img[np.where(realminimask != 0)]
mean_value = np.mean(img_background)
std_value = np.std(img_background)
info.append({'Label': i, 'Area': area_tmp, 'Mean': mean_tmp, 'Std': std_tmp, 'BackMean': mean_value,
'BackStd': std_value})
return info
\ No newline at end of file
......@@ -3,13 +3,12 @@ import logging
import os
import sys
import numpy as np
import torch
import torch.nn as nn
from torch import optim
from tqdm import tqdm
from eval import eval_net
from utils.eval import eval_net
from unet import UNet
from torch.utils.tensorboard import SummaryWriter
......
......@@ -2,7 +2,7 @@ import torch
import torch.nn.functional as F
from tqdm import tqdm
from dice_loss import dice_coeff
from utils.dice_loss import dice_coeff
def eval_net(net, loader, device, n_val):
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment