Commit b835e670 by 王肇一

unet module

parent f07209f5
img/*
out/*
__pycache__/
.idea/*
\ No newline at end of file
.idea/*
data/imgs/*
data/masks/*
data/output/*
\ No newline at end of file
......@@ -5,30 +5,70 @@
## 目录结构
```.
├── README.md
├── img
│ └── folders
│ └── imgs
├── out
│ ├── csv
│ │ └── result
│ └── graph
│ └── processed images
├── main.py
└── util.py
├── data
│ ├── module
│ │ └── trained modules
│ ├── imgs
│ │ └── origin images
│ ├── masks
│ │ └── ground truth masks value (0~1)
│ └── output
│ ├── csv
│ │ └── result
│ └── graph
│ └── processed images
└── other codes
```
## 参数
## 主程序入口
### 参数
* -m ,--method : 0 使用Kmeans,1 使用阈值法(butterworth滤波),2 使用阈值法(fft)。默认Kmeans
* -c ,--core : Kmeans分为几类,默认5,仅对Kmeans法有效
* -p ,--process : 使用线程数量,默认8,仅对阈值法有效
## 示例
### 示例
- `python main.py -m 1 -p 16`
- `python main.py -m 0 -c 8`
## 使用Unet模型
### 训练
```shell script
> python train.py -h
usage: train.py [-h] [-e E] [-b [B]] [-l [LR]] [-f LOAD] [-s SCALE] [-v VAL]
Train the UNet on images and target masks
optional arguments:
-h, --help show this help message and exit
-e E, --epochs E Number of epochs (default: 5)
-b [B], --batch-size [B]
Batch size (default: 1)
-l [LR], --learning-rate [LR]
Learning rate (default: 0.1)
-f LOAD, --load LOAD Load model from a .pth file (default: False)
-s SCALE, --scale SCALE
Downscaling factor of the images (default: 0.5)
-v VAL, --validation VAL
Percent of the data that is used as validation (0-100)
(default: 15.0)
```
### 监控
使用tensorboard可视化监控
`tensorboard --logdir=runs`
## 数据
输入图像存放于imgs文件夹下,单通道灰度图像,8bit,200*200
标注的mask存放于masks文件夹下,像素0为背景,1为目标
## cli工具
部分可能用得到的cli工具,主要为python或shell脚本。可根据需要自行修改。
## 版本
|版本号|功能|
|:---:|:---|
|v0.1|实现了Kmeans、阈值法两种分割方法,提供命令行工具|
|v0.2|1.更新了滤波算法<br>2.修改了一些小bug<br>3.对部分函数进行解耦|
\ No newline at end of file
|v0.2|1.更新了滤波算法<br>2.修改了一些小bug<br>3.对部分函数进行解耦|
|v0.3|1.训练了Unet模型<br>2.增加了部分命令行工具<br>4.重新设计目录结构|
\ No newline at end of file
......@@ -33,8 +33,6 @@ def get_args():
formatter_class = argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('-m', '--method', metavar = 'M', type = int, default = 0,
help = '0 for KMeans; 1 for Threshold; 2 for newThreshold', dest = 'method')
#parser.add_argument('-o', '--out', metavar = 'O', type = str, default = './out', help = 'Path to output',
# dest = 'out')
parser.add_argument('-c', '--core', metavar = 'C', type = int, default = 5, help = 'Num of cluster', dest = 'core')
parser.add_argument('-p', '--process', metavar = 'P', type = int, default = 8, help = 'Num of process',
dest = 'process')
......
""" Submit code specific to the kaggle challenge"""
import os
import torch
from PIL import Image
import numpy as np
from predict import predict_img
from unet import UNet
# credits to https://stackoverflow.com/users/6076729/manuel-lagunas
def rle_encode(mask_image):
pixels = mask_image.flatten()
# We avoid issues with '1' at the start or end (at the corners of
# the original image) by setting those pixels to '0' explicitly.
# We do not expect these to be non-zero for an accurate mask,
# so this should not harm the score.
pixels[0] = 0
pixels[-1] = 0
runs = np.where(pixels[1:] != pixels[:-1])[0] + 2
runs[1::2] = runs[1::2] - runs[:-1:2]
return runs
def submit(net, gpu=False):
"""Used for Kaggle submission: predicts and encode all test images"""
dir = 'data/test/'
N = len(list(os.listdir(dir)))
with open('SUBMISSION.csv', 'a') as f:
f.write('img,rle_mask\n')
for index, i in enumerate(os.listdir(dir)):
print('{}/{}'.format(index, N))
img = Image.open(dir + i)
mask = predict_img(net, img, gpu)
enc = rle_encode(mask)
f.write('{},{}\n'.format(i, ' '.join(map(str, enc))))
if __name__ == '__main__':
net = UNet(3, 1).cuda()
net.load_state_dict(torch.load('MODEL.pth'))
submit(net, True)
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment